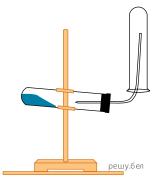
Вариант № 8460

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1В4Г2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


- 1. Укажите символ химического элемента:
 - 1) Br_2 2) I 3) H_2 4) O_3
- **2.** В атоме химического элемента 21 электрон. Его относительная атомная масса равна:
 - 1) 20 2) 21 3) 39 4) 45
- **3.** Формулы веществ, каждое из которых состоит из атомов трех химических элементов указаны в ряду:

- **4.** Согласно положению в периодической системе наименьший радиус имеют атомы химического элемента:
 - 1) Ca 2) Na 3) Mg 4) Be
 - 5. Ионная связь имеется во всех веществах ряда:
 - 1) CuBr₂, BaCl₂, HNO₃ 2) Al, CH₃COOH, CH₄ 3) SO₃, K₂SO₄, NaI 4) NaNO₃, K₂S, NaF
 - 6. Атомную кристаллическую решетку в твердом агрегатном состоянии образует:
 - 1) H₂O 2) NH₄Cl 3) SiO₂ 4) H₃PO₄

7. Установите соответствие между формулой частицы и числом электронов, которые образуют химические связи в этой частице.

ФОРМУЛ	А ЧАСТИЦЫ	ЧИСЛО ЭЛЕКТРОНОВ			
1 —	- F ₂	a — 2			
$2 - NF_3$		б — 4			
3 — HS ⁻		в — 5 г — 6			
1) 1а, 2г, 3б	2) 1б, 2в, 3а	3) 1a, 2r, 3a	4) 1а, 2в, 3б		

8. С помощью прибора, изображённого на рисунке, способом вытеснения воздуха с минимальными потерями можно собрать газ (н. у.):

- 1) Бутадиен-1,3 2
- 2) аммиак
- 3) хлороводород
- 4) оксид азота(I)
- 9. Укажите правильное утверждение относительно азота и фосфора:
 - 1) максимальная валентность равна номеру группы
- 2) встречаются в природе только в виде соединений с другими химическими элементами
 - 3) радиус атома фосфора больше радиуса атома азота 4) общая формула высшего оксида $\Im_2 O_3$
- **10.** Для получения серебра из водного раствора нитрата серебра (I) целесообразно использовать металл:
 - 1) Fe 2) Pt 3) Au 4) Cs
- 11. Согласно положению в периодической системе наиболее выраженные металлические свойства проявляет элемент, электронная конфигурация внешнего энергетического уровня которого в основном состоянии:
 - 1) $2s^2$ 2) $3s^2$ 3) $4s^1$ 4) $3s^1$

12.	Основные	свойства	высших	оксидов	предложенных	элементов	монотонно	уси-
ливаютс	ся в ряду:							

- 1) Ca, Mg, Be
- 2) Mg, Be, Ca
- 3) Be, Ca, Mg
- 4) Be, Mg, Ca
- 13. Ионные связи содержатся во всех веществах ряда:
 - 1) K₂O, CaBr₂, Au 2) NH₄Cl, Mg, HCl
 - 4) CO₂, Cl₂, KBr
- 3) KF, NH₄Cl, CuSO₄

- 14. Хлор, так же как и фтор:
- а) образует оксиды
- б) является газом (н. у.)
- в) НЕ имеет аллотропных модификаций
- г) НЕ реагирует со стеклом
 - 1) б, г
- 2) a, в, г
- 3) a, г
- 4) б, в
- 15. Укажите вещества, водные растворы которых содержат одинаковые ионы (гидролиз веществ и диссоциацию воды не учитывайте):
 - a) KH₂PO₄
 - б) Ca(OH)₂
 - B) H_3PO_4
 - Γ) $C_{12}H_{22}O_{11}$

2) a, в 3) a, г 1) б. в

16. Правая часть уравнения реакции вещества X с серной кислотой имеет вид: ... = $(NH_4)_2SO_4 + H_2S$. Молярная масса (г/моль) вещества X равна:

- 1) 96 2) 68 3) 66 4) 51

4) б, г

- 17. Различить водные растворы Na₂S и NaNO₃ можно добавлением:
- 1) мели:
- 2) раствора KOH; 3) раствора BaCl₂;
- 4) соляной кислоты.
- 18. Укажите ряд, во всех веществах которого имеется ионная связь:
 - 1) NH_4NO_3 , Mg
- 2) (CH₃COO)₂Ca, KCl 4) CuS, N_2O_5
 - 3) HCl, Na₂CO₃
- 19. Массовая доля металла в оксиде МеО равна 60.0%. Для этого металла справедливо утверждение:
 - 1) катионы обусловливают жесткость воды
 - 2) НЕ вытесняет серебро из его солей 3) оксид реагирует со щелочами
 - 4) гидроксид при нагревании НЕ разлагается на оксиды

- 20. В отличие от воды разбавленный водный раствор гидроксида натрия растворяет:
- a) K₂O
- б) Zn
- B) CuSO₄ · 5H₂O
- Γ) Al(OH)₃

- 1) $6, B, \Gamma$ 2) $a, 6, \Gamma$ 3) a
- 4) б, г
- 21. В закрытой системе протекает одностадийное превращение

$$A(\Gamma) + B(\Gamma) \rightleftharpoons C(\Gamma).$$

После установления равновесия давление в системе увеличили в четыре раза. Укажите правильное утверждение:

- 1) равновесие в системе НЕ нарушилось
- 2) скорость обратной реакции уменьшилась
- 3) увеличилась скорость и прямой, и обратной реакции
 - 4) увеличился объем системы
- 22. Смесь азота и кислорода объемом (н. v.) 400 см³ пропустили над металлическим литием. В результате смесь полностью поглотилась с образованием нитрида и оксида лития. Масса твердого вещества при этом увеличилась на 0.5625 г. Укажите значение молярной массы (г/моль) исходной смеси азота с кислородом:
 - 1) 31,5 2) 30,5 3) 29,5 4) 28,5

- 23. Водный раствор дигидрофосфата натрия вступает в реакцию со всеми веществами, формулы которых:
 - 1) Na₂O, KCl

- 2) N₂, KOH 3) KOH, NaOH 4) NaNO₃, KCl
- 24. Имеется насыщенный водный раствор фторида бария. Осадок образуется при:
- а добавлении в раствор твердого фторида калия
- б упаривании раствора и последующем охлаждении до первоначальной темпера
 - в добавлении в раствор твердого хлорида бария
 - г добавлении в раствор дистиллированной воды
- 1) а, б, г 2) б, в 3) а, б, в
- 4) a
- 25. Какая масса (г) алюминия должна прореагировать с разбавленной серной кислотой, чтобы выделившийся газ занял такой же объем, как и газ, выделяющийся при действии избытка концентрированной серной кислоты на медь массой 0,054 г? Объемы газов измерены при одинаковых условиях.
 - 1) 0.192
- 2) 0.012
- 3) 0.015
- 4) 0,088

4) лавсан

26. К раствору соляной кислоты, масса HCl в котором равна 34,3 г, добавили избыток гидрокарбоната натрия. Если выход газообразного (н. у.) продукта реакции составляет 77%, то его объем (дм 3 , н. у.) равен:

27. К классу альдегидов относится вещество, название которого:

```
1) этиленгликоль 2) пропаналь 3) пропен 4) метанол
```

28. Укажите процесс, одним из продуктов которого является кислород:

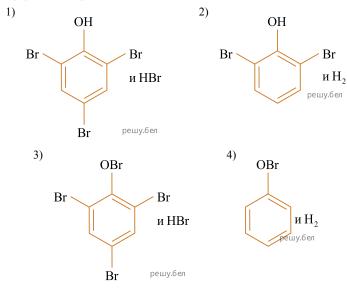
1) растворение алюминия в растворе щелочи

- 2) термической разложение калиевой селитры 3) спиртовое брожение глюкозы 4) разложение гидроксида меди (II)
- 29. Выберите вещества, которые в указанных условиях реагируют с бензолом:

а —
$$\mathrm{Br_2/FeBr_3}$$
, t
б — $\mathrm{HNO_3}$ (конц.) / $\mathrm{H_2SO_4}$ (конц.), t
в — $\mathrm{H_2O}$, t
г — $\mathrm{HCl}(\mathrm{p-p})$

30. Пропин $\mathbf{H} - - - \mathbf{C}^1 \equiv \mathbf{C}^2 - - - \mathbf{C}\mathbf{H}_3$ взаимодействует с избытком водорода. При этом:

- а) связь между атомами C^1 и C^2 укорачивается
- б) протекает реакция присоединения
- в) число π -связей увеличивается
- г) валентный угол $\mathbf{H} - \mathbf{C}^1 - \mathbf{C}^2$ уменьшается


31. Вещество, которое НЕ вступает в реакцию гидрирования, — это:

32. К классу спиртов относится основной органический продукт превращений:

$$C_2H_5Cl + NaOH \xrightarrow{H_2O, t} C_2H_2 + H_2O \xrightarrow{H^+/Hg^{2+}}$$
1)
2)

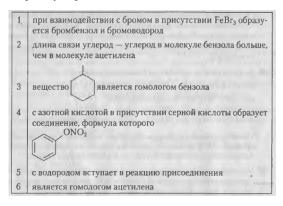
 $CH_3CHO + H_2 \xrightarrow{Ni, t, p} CH_3COOH + NaOH \xrightarrow{pemy.6e}$
3)
4)
1) a_1B 2) $a_1\Gamma$ 3) a_1B 4) a_2B 4) a_1B 5, a_2B 6, a_1B 5.

33. Продуктами химического взаимодействия C_6H_5OH и $Br_2(изб.)/$ H_2O являются вещества, формулы которых:

- **34.** В результате реакции поликонденсации, а не полимеризации получают высокомолекулярное соединение:
 - 1) полиизопрен 2) динитроцеллюлозу 3) поливинилхлорид
 - 35. Укажите верное утверждение относительно крахмала:
 - 1) является природным полимером 2) устойчив к гидролизу в кислой среде 3) относится к растительным жирам

- 4) конечным продуктом гидролиза являются декстрины
- **36.** Число гидроксильных групп в молекуле глюкозы, находящейся в линейной форме, равно:

1) 3 2) 4 3) 5 4) 6


37. Сумма коэффициентов перед формулами продуктов в уравнении реакции полного окисления глицина кислородом равна:

1) 9 2) 13 3) 20 4) 33

38. В промышленности реакцию полимеризации используют для получения:

1) капрона 2) полиизопрена 3) вискозного волокна 4) лавсан

- 39. Твердый при обычных условиях нерастворимый в воде оксид А широко применяется в строительстве и является сырьем для получения стекла. При сплавлении А с карбонатом натрия получили твердое хорошо растворимое в воде вещество Б и газ (н. у.) В. Соль Б можно получить также при сплавлении А с оксидом натрия. При пропускании избытка В через раствор гидроксида кальция выпал белый осадок Г, который затем растворился с образованием раствора вещества Д, обусловливающего временную жесткость воды. Найдите сумму молярных масс (г/моль) веществ А и Д.
 - 40. Выберите верные утверждения относительно бензола:

Ответ запишите в виде последовательности цифр в порядке возрастания, **например:** 245.

- **41.** Газообразная смесь алкана с этеном имеет объем (н. у.) 13,44дм³. Половину смеси пропустили через сосуд с избытком бромной воды. При этом масса сосуда с содержимым выросла на 3,5г. Вторую половину смеси сожгли в избытке кислорода, в результате чего образовалась вода массой 10,8 г. Определите молярную массу (г/моль) смеси углеводородов.
- **42.** Укажите сумму молярных масс (г/моль) органических веществ X_3 и X_4 , образующихся в результате следующих превращений:

$$NO_2$$
 $Ee/HCl(изб.)$ X_1
 $Ee/HCl(изб.)$ X_2
 $Ee/HCl(изб.)$ X_3
 $Ee/HCl(изб.)$ X_4
 $Ee/HCl(изб.)$ X_3
 $Ee/HCl(изб.)$ X_4
 $Ee/HCl(usb)$ X_4
 X_4

- 43. Зеленовато-жёлтый газ A (примерно в два с половиной раза тяжелее воздуха) реагирует с самым лёгким газом Б с образованием вещества В. Водный раствор вещества В является сильной кислотой. При взаимодействии В с газом Г, образующимся при действии гидроксида натрия на соли аммония, образуется соль Д, использующаяся при пайке. Найдите сумму молярных масс (г/моль) веществ В и Д.
- **44.** Для растворения смеси оксидов Fe_2O_3 и FeO массой 22 г необходимо 175 г раствора серной кислоты с массовой долей растворенного вещества 21%. Найдите массовую долю (%) кислорода в данной смеси оксидов.
- 45. Насыщенный альдегид, в молекуле которого содержится один атом кислорода, восстановили водородом. Продукт реакции восстановления прореагировал с уксусной кислотой в присутствии серной кислоты. В результате образовалось органическое соединение массой 8,88 г, при взаимодействии которого с избытком раствора гидроксида натрия получилось натрийсодержащее вещество массой 9,84 г. Определите молярную массу (г/моль) альдегида.
- **46.** При дегидратации насыщенного ациклического одноатомного спирта образовался алкен, объем паров которого в 12 раз меньше объема кислорода, необходимого для полного сгорания такой же порции спирта. Рассчитайте молярную массу (г/моль) спирта (объемы веществ измерены при одинаковых условиях).
- 47. К раствору медного купороса массой 48 г с массовой Долей сульфата меди(II) 8% добавили некоторое количество насыщенного раствора сульфида натрия. Растворимость сульфида натрия в условиях эксперимента составляла 25 г на 100 г воды. После отделения осадка оказалось, что концентрация (моль/дм 3) ионов Na^+ в растворе в девять раз больше, чем S^{2-} . Определите массу (г) насыщенного раствора сульфида натрия, использованного в описанном эксперименте.

48. Дана схема превращений

$$\begin{array}{c} {\rm CH_4} \xrightarrow{1500~^{\circ}{\rm C}} {\rm X_1} \xrightarrow{{\rm C}} {\rm X_2} \; ({\rm 1}{\rm моль}) \xrightarrow{1} {\rm Mоль} \; {\rm Br_2} \; / \; {\rm FeBr_3} \\ \\ \longrightarrow {\rm X_3} \xrightarrow{{\rm NaOH} \; ({\rm изб.}) \; / \; {\rm H_2O}, \; t, \; p \to {\rm X_4} \xrightarrow{0.5 \; {\rm моль} \; {\rm H_2SO_4} \to {\rm A} \; + \; {\rm B}. \end{array}$$

Определите сумму молярных масс (г/моль) органического и неорганического веществ A и Б.

- **49.** При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н. у.) 34,944 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 24% по объему.
- **50.** В смеси, состоящей из пропиламина, бутана и этана, массовые доли водорода и азота равны 16,4% и 15,8% соответственно. Вычислите максимальную массу (г) такой смеси, которую можно окислить газовой смесью массой 240 г, состоящей из озона и кислорода. Продуктами реакции являются только CO_2, H_2O и N_2 .